COVID-19 & the Classroom Webinar Series Air & Surfaces

August 31, 2020

The information presented here is the most up-to-date, data-driven and evidence-based science to help school districts make important decisions regarding face-to-face instruction.

Duke University and its partners will not make decisions nor will they advise specific action.

Format

- •We will take questions using the Q & A function and work in as many questions as possible.
- •Questions that are not answered during the webinar will be collated and may be combined with other questions addressed in a "Frequently Asked Questions" document or future webinars.
- In the coming weeks the recording will be available if you are unable to join live. We are developing a website that will contain these materials.

Question 1 - Wake County

Is the virus (SARS-COV-2) transmitted through the air?

Experiment to assess SARS-CoV-2 in air

- Methods: Aerosols containing SARS-CoV-2 were generated and fed into a Goldberg drum
- Results: SARS-CoV-2 RNA survived 3 hours in the air
- BUT: Survival of SARS-CoV-2 in a drum is consistent with aerosol transmission but does NOT demonstrate airborne (longdistance) transmission

Van Doremalen N, et al. NEJM 2020;382:16 April 2020 Kormuth KA. et al. JID 2018;XX00:1–9

What happened in the real world?

- Outbreak in a poorly ventilated restaurant
- Outbreak investigation
 - Involved 3 families, 10 members
 became infected who sat at 3
 neighboring tables; 3 members of family
 B and 2 members of family A infected
 - None of the waiters or 68 patrons of the remaining 15 tables became infected
- Reported conclusion = "Aerosol transmission of SARS-CoV-2 due to poor ventilation" to nearby people

Key Points from Real World Settings

- All infected persons were sitting within a short distance of each other
- Despite poor ventilation in the restaurant, no infections among those seated further away
- No infections among wait-staff

Question 2 – Durham County

Recently, the CDC provided recommendations for considering HEPA filters (especially in nurses' station) and opening doors/windows in schools.

Can you tell us more about the evidence supporting this recommendation?

Factors to consider with open windows

- Noise and allergens
- Possible issues with maintaining heating and cooling (e.g. cars, houses)
- No data to support its use as a COVID-19 prevention strategy
- •Unclear how the use of fans will help here

Experiment to assess SARS-CoV-2 in the air

Methods: Samples from patient rooms; detect virus using RT-PCR

- Results: 63% air samples were positive; Virus detected in air (>2m from patient) and hallway
- •BUT: SARS-CoV-2 RNA outside rooms does NOT mean that live virus was present or that there was an infectious dose of virus in the air of that it can infect others

Filtration for Ventilation Systems

There is no filter or building system feature that is proven to remove COVID-19 or any other airborne infectious disease from the air other than in specially constructed hospital units.

Question 3 – Chapel Hill

Many of the school buildings are older with poor ventilation; some of these classrooms don't have windows that support air flow.

- –What does this mean for risk of children and staff in these circumstances?
- –What can be done to decrease risk in these circumstances?

For clarity, this study does not address the

question

Annals of Internal Medicine

OBSERVATION: BRIEF RESEARCH REPORT

Risk for Severe COVID-19 Illness Among Teachers and Adults Living With School-Aged Children

Background: Schools provide critical educational and health benefits to children, and reopening them facilitates parents', particularly mothers', return to work (1). Although children rarely have severe coronavirus disease 2019 (COVID-19) illness, they can transmit infection (2).

Objective: To determine the prevalence of risk factors for severe COVID-19 illness among teachers and adults living with school-aged children.

- Used data from a 2018 survey to assess risk factors for severe COVID-19 illness:
- Among the ~70 million (M) US adults living with school-aged children, 41% had definite and 54% had definite or possible risk factors
 - -2.5M > 64 years
 - 5M million with heart disease
 - 5M with type 2 diabetes
- Among ~3M teachers, 40% had definite and 51% had definite or possible risk factorfor severe COVID-19 illness
 - 32% had a body mass index (BMI) of 30 kg/m² or greater
 - 8% had a cardiac condition

COVID-19 Transmission and Children: The Child Is Not to Blame

Benjamin Lee, MD, William V. Raszka, Jr, MD

China: 68 kids, Jan 20 – Feb 27, 65 (96%) had prior adult contact

France: 9 yo M with COVID, Flu and picoRNA. >80 contacts at 3 schools. No secondary contacts with COVID-19 despite +ve flu

Australia: 9 students and 9 staff in 15 schools contacts with 735 students and 128 staff.
Only 2 secondary infections (staff & student)

SARS-CoV2 transmission in schools may be less important in community transmission than initially feared

Danis K, Epaulard O, Bénet T, et al; CID. 2020 Cai J, Xu J, Lin D, et al. CID. 2020 Wu Q, Xing Y, Shi L, et al. Pediatrics. 2020

Key Points

- Other COVID-19 prevention tips (cleaning and distancing) are more effective than a focus on HVAC systems or filters
- Opening windows might have unintended consequences but could be used in the right setting
- Surfaces are not the most likely way to spread COVID-19 but should be kept clean
- Community prevalence will reflect school prevalence
- Reduce COVID-19 spread by washing hands, wearing a mask and waiting 6 feet from others

Question 4 - Orange County

Can UV light air purification devices in the air ducts help?

Air Purification Devices in the Ducts

- The amount of UVC in public locations under current rules would stop ~90% of the virus in ~8 minutes.
 - -95% in ~11 minutes
 - -99% in ~16 minutes
 - -99.9% in ~25 minutes
- Dose and Time: Many UVC lamps sold for homes are low dose and may take longer to really stop a bacteria or virus.
- Direct Exposure: UVC radiation can only stop a virus if it touches a virus directly. Soil, dust or other pollutants may block the UV radiation.
- Cleaning is still MOST important

Key Points

- Ultraviolet light in the air duct does not prevent short range transmission
 - -Too far away from the surfaces that could contain droplets
 - Not part of CDC guidance
 - Not a short term solution
- No clinical evidence this decreases the risk of COVID-19 spread in classrooms
- Cleaning is still the best means for preventing transmission

Question 5

Many schools are not air-conditioned and scientists have brought up concerns about heat exhaustion brought on by masks. What can be done to mitigate this risk?

Key Points

- No existing scientific evidence that wearing a mask can cause heat exhaustion
- Wearing a mask is safe even while exercising

Question 6

•Can COVID-19 be transferred through pens, surfaces, and other shared materials?

Key Points

- The best ways to prevent spread on shared materials is to limit the amount of virus on shared materials:
 - -Limit sharing
 - -Wear a mask
 - -Wash your hands

Question 7

How long is the virus viable on surfaces- cotton mask, metals (doorknobs, etc.), glass, desks, wood, plastics, etc.?

Can COVID-19 be transferred through pens, surfaces, and other shared materials?

Decreased virus on different surfaces over time

Amount of virus in these experiments was really high: MUCH higher than what happens with droplet transmission, especially if masks are used

Real life experience

Question 8

- How often are cleaning and disinfection needed to clear viruses on surfaces
- What are the appropriate precautions for performing these tasks?

Surfaces - Cleaning & Disinfection

Cleaning

- -physically removes germs, dirt, and impurities from surfaces or objects by using soap (or detergent) and water
 - Wear reusable or disposable gloves
 - Clean surfaces using soap and water, then use disinfectant
 - Cleaning with soap and water reduces number of germs, dirt and impurities on the surface. Disinfecting kills germs on surfaces
 - Practice routine cleaning of frequently touched surfaces.

Surfaces Cleaning & Disinfection

Disinfecting

- Using chemicals to kill germs on surfaces or objects
- Keeping surface wet for a period of time
- Precautions such as wearing gloves and making sure you have good ventilation during use of the product
- Always read and follow the directions on the label to ensure safe and effective use
 - Sealed bleach solutions will be effective for disinfection up to 24 hours.
 - Alcohol solutions with at least 70% alcohol may also be used.
- Remember safety first

Key Points

Limit shared equipment

Designate people to clean spaces before, during and after use

Place cleaning products in key locations

EPA.GOV; List of Disinfectants

Key Points for Cleaning & Disinfecting Surfaces

- Clean and disinfect frequently touched surfaces
- Limit the use of shared objects
- Discourage sharing of items that are difficult to clean or disinfect
- Keep each student's belongings separated from others'
- Ensure adequate supplies to minimize sharing

Question

Have any studies determined the degree to which active coronaviruses on a surface can become airborne again after a surface is disturbed and how this might contribute to viral load overtime?

Can COVID-19 last on surfaces and in the air?

U.S. Department of Health and Human Services Centers for Disease Contail and Prevention

Stay tuned for more webinars

Discuss how COVID-19 spreads and how to maintain a safe classroom environment 8/31 **AIR & SPACES** MASKS 8/24

Review evidence to support

the use of masks to prevent COVID-19.

Review the anticipated impact of COVID-19 prevention on **SPECIAL NEEDS** 9/16

Identify accommodations to provide children or adults with special needs

Review methods for data collection and surveillance in the school setting

10/14 **SCHOOLS & PARENTS SCHOOLS & INFECTION** 10/28

Focus on methods to provide safe care and protect health workers during an uncontrolled pandemic

10/7

SCHOOL NURSING

Addressing parental concerns with available scientific data

Influenza spread

9/23

COVID-19 & FLU

Available resources

- North Carolina Public Health resources:
 - -https://www.ncdhhs.gov/divisions/public-health/covid19

- CDC resources:
 - -https://www.cdc.gov/coronavirus/2019-ncov/index.html

- WHO resources:
 - -https://www.who.int/emergencies/diseases/novel-coronavirus-2019

- Many schools are not air-conditioned and scientists have brought up concerns about heat exhaustion brought on by masks. What can be done to mitigate this risk? - Orange County (North Central Region / District 3)
- What is the plan to address air quality issues within the building? In addition, some of these classrooms don't have windows that support air flow? – CHCSS (Chapel Hill-Carrboro, North Central Region / District 3)
- Parents are also asking questions about air quality and facilities. What can we communicate to parents about this aspect of school safety? CHCSS (Chapel Hill-Carrboro, North Central Region / District 3)
- Please discuss the evidence for airborne transmission of SARS-CoV2? (24Aug2020 Webinar)
- Have any studies determined the degree to which active coronaviruses on a surface can become airborne again after a surface is disturbed and how this might contribute to viral load overtime? -(24Aug2020 Webinar)
- Can Having UV light Air Purifier in the classroom help? (24Aug2020 Webinar)
- Importance of hand hygiene and surface disinfection UNC (Chapel Hill-Carrboro, North Central Region / District 3)
- How long is the virus viable on surfaces- cotton mask, metals (doorknobs, etc.), glass, desks, wood, plastics, etc.? (24Aug2020 Webinar)